®e
CcCRANY

NERSCS8 CoE
Key Actions when optimizing for
KNL

Nathan Wichmann
wichmann@cray.com

. C=RANY
Outline 8

Characterization and Multi-node Considerations
Target Science
Profiles and Hotspots
Scaling and Communication

Single node optimizations
Memory and cache footprint analysis
Memory bandwidth requirements
Vectorization
Creating a kernel to aid in further analysis and testing

Example: BerkeleyGW - FF kernel

2/24/2014 Cray Private

What Science do you want to run on Cori S O

\
\

Identify 1 or a few science problems that you anticipate
running on Cori

|dentifying the science problems will help focus efforts on what routines
and issues are important

Estimate how many nodes you will use during the run

Does the code already scale this high?
What can we say about communication

The combination of science problem and number of nodes
will allow one to estimate memory footprints, array sizes,
and trip count sizes

This information is critical

Scaling and communication ~

How high does the code scale

Does your code use both OpenMP and MPI?

How many OpenMP threads can you utilize

What is limiting your scaling?

Communication overhead?
Lack of parallelism on a given science problem

Understand and optimizing scaling is critical

KNL requires scaling to higher numbers of cores to achieve the same
level of performance

Scaling impacts loop trip counts, memory footprints, and more

Where is the time being spent S !

\
\

Are you sure? Verify
Use statistical profilers to determine where the time is
being spent

Are there obvious key routines that time up a significant percentage of
time?

Are there key loops or code sections?
How many routines before you hit 80% of the run time
Is the profile different for different science problems?

Understanding your memory footprint is critical ST

\
\

Do you expect to your problem to consume a significant
amount of main memory?
Main memory is about 96 Gbytes

Is it possible that your problem will fit into fast memory
Fast memory is 16 Gbytes per node
e Can be configured as a “memory cache”

Can be configured 50% cache and 50% explicitly managed

Can be configured 25% cache and 75% explicitly managed

Can be configured at 100% explicitly managed

What is the memory access pattern for the routines and
loops identified as important

What are the trip counts in that loop nest?

How much data is accessed?

How much is reused more than once?

Vectorization cRas
Do the loops vectorize? %

Vectorization is very important to achieving high
performance rates
Edison vectors are 4 DP words, Cori is longer
Cannot take full advantage of functional units without vectorization
Unlikely to take full advantage of memory bandwidth
Scalar performance on Cori

Common inhibitors
Dependencies
Indirect addressing may prevent vectorization or make is less efficient
o e.g. A(indx(i)) =
Function / subroutine calls
If tests inside of inner loops may slow execution and prevent vectorization
More...

Are your kernels memory bandwidth bound RS A

\
\

Do you expect to your problem to consume a significant
amount of main memory?
Main memory is about 96 Gbytes

Is it possible that your problem will fit into fast memory

Fast memory is 16 Gbytes per node

e Can be configured as a “memory cache”

o Can be configured 50% cache and 50% explicitly managed
o Can be configured at 100% explicitly managed

What is the memory access pattern for the routines and
loops identified as important
What are the trip counts in that loop nest?

How much data is accessed?
How much is reused more than once?

How can you tell if you are memory bandwidth <—/Ras
bound? \

\
Sometimes it is easy
One or more loop nests are streaming through a huge amount of data
Little to no reuse
Easy to determine the

Sometimes it is difficult
Some trip counts are large
But some data are reused
Not obvious what the compiler did
Not obvious if the data remains in cache

Counters can be difficult to interpret
Difficult to keep track of different levels of cache

Try to run kernel using 1 or 2 fewer cores
Adjust the number of OMP threads
Use aprun —S option to spread mpi ranks across more sockets
Igpenc‘jormance per socket does not change, kernel may be bandwidth
oun

Try and examine trip counts and reference patterns

® e
Create kernel that are representative of critical —=Ra
loops |

Use all of the information previously discussed to create
kernels to be used for further investigation \

Trip counts and array sizes per node should be as accurate

as possible
Goal is to reflect what are real science problem running on a significant
portion of the machine would look like on a single socket

Kernel should use all of the cores of a single socket on

Edison
Kernels that only run on a single core will not capture the full memory

footprint and bandwidth characteristics of the real code

10

Why do we need a kernel? AN
Extreme flexibility and portability ‘

\
Cannot assume we will always run on a multi-node supercomputer
Might not even run it “directly” on a computer

Run on many different platforms
Single socket of edison
KNC whitebox
KNL simulator or emulator
Early KNL hardware
KNL whitebox

Focused analysis

Some tools may not be able to run a full program
Want to focus on a particularly important area

Flexible experimentation

Try different compilers and options without porting entire code

May want to try different “decompositions” and optimizations that would
(temporarily) break the larger code

1

L J
CcCRANY

Example Analysis and Optimizations:

BerkeleyGW

BerkeleyGW RN
Identified 4-6 kernels ‘
GPP
FF
BSE

Chi Summation
FFT (library not analyzed by Cray)
Scalapack (library not analyzed by Cray)

Cray analyzed and provided potential optimizations GPP,
FF, BSE, and Chi Summation for:

Vectorization

Memory footprint requirements

Memory bandwidth requirements

OpenMP effectiveness

Cray and Intel compiler

Next few slides review some of the work done for FF

13

BerkeleyGW kernels: FF RS TS

Excellent vectorization and OpenMP
Used craypat to examine where time was being spent

module unload darshan # darshan does not seem to play well with craypat
module load perftools

ftn -rm -o ffkernel.x ffkernel.f90

pat build ffkernel.x

run

pat report ffkernel.x+pat+36422-5701s.xf > ffkernel.manyfreqg.patreport
Generates both a routine level...

100.0% | 585.0 | -— | —-- |Total
81.9% | 479.0 | —— | —- |USER
| ___
| 64.4% | 377.0 | 10.8 | 3.1% |ffkernel .LOOP@1i.388
| 12.6% | 74.0 | - | -— |ffkernel
| 3.8% | 22.0 | 4.2 | 19.3% |ffkernel .LOOP@1i.517
... and a line Ievel statistical profile report
04.4% | 377.0 | | -- |ffkernel .LOOP@1i.388

| . .6 | 18.8% |1line.406
| 12.5% | 73.0 | 11.2 | 12.7% |1line.408
| 0 | 10.1% |line.414

14

BerkeleyGW kernels: FF CRANY
Line level statistical profile report)

|| 64.4% | 377.0 | - | -- |ffkernel .LOOP@li.388

I

4111 25.6% | 150.0 | 29.6 | 18.8% |1line.406

4111 12.5% | 73.0 | 11.2 | 12.7% |1line.408

4111 25.1% | 147.0 | 14.0 | 10.1% |line.414

!$OMP PARALLEL do private (my igp,igp,indigp,igmax,ig,schDtt,I epsRggp int, &
!SOMP I epsAggp int,schD,schDt,ifreq) reduction (+:schdt array) 'This was line 388 in the source
do ifreg=1l,nFreq

do my igp = 1, ngpown
do ig = 1, igmax
I epsRggp int = I epsR(ig,my igp,ifreq) 'This was line 406 in the source
I epsAggp int = I epsA(ig,my igp,ifreq) 'This was line 408 in the source
schD=I epsRggp int-I epsAggp int
schDtt = schDtt + matngmat (ig,my igp)*schD !This was line 414 in the source
enddo
enddo
enddo

Don’t focus too much on the time spent in one line vs another...

...The point is that it is clear that a very significant amount of time is being spent in this loop
nest / region

15

BerkeleyGW kernels: FF cRas

Examined trip counts and declarations to calculate memory '
footprint and reuse
nFreq = 20000

Ngpown = 20

Igmax = 1000
| SOMP PARALLEL do private (.. &
'SOMP ..) reduction (+:schdt array)

do ifreg=1l,nFreq
do my igp = 1, ngpown
do ig = 1, igmax
I epsRggp int = I epsR(ig,my igp,ifreq)
I epsAggp int = I epsA(ig,my igp,ifreq)
schD=I epsRggp int-I epsAggp int
schDtt = schDtt + matngmat (ig,my igp) *schD
enddo
enddo
enddo

Lots and lots of parallelism

| epsR and |_epsA were each about 1.6 Gbytes with no
immediate reuse

matngmat about 80 kbytes, and shared across threads

16

BerkeleyGW kernels: FF cRas
Let’s examine OpenMP scaling for a moment ‘

Time Spent in Loop 388

—_
~ O o0

5
c 12
o
@ 10
N
£ 8
©
E 6
[
2
0
0 2 4 6 8 10 12

Number of Threads

Virtually no improvement in performance after 8 threads
Yet we know there is lots and lots of parallelism

17

BerkeleyGW kernels: FF cRas

\

Streaming data arrays that are more than 3 Gbytes in size
Lots of parallelism, but performance stops improving

Conclusion: Loop was memory bandwidth bound

On Cori |_epsR might fit into fast memory

But then we would still just be limited by the bandwidth of fast memory
Only way to go faster is to find more data reuse

do ifreg=1l,nFreq
do my igp = 1, ngpown
do ig = 1, igmax
I epsRggp int I epsR(ig,my igp,ifreq)
I epsAggp int I epsA(ig,my igp,ifreq)
schD=I epsRggp int-I epsAggp int
schDtt = schDtt + matngmat (ig,my igp) *schD
enddo
enddo
enddo

18

BerkeleyGW kernels: FF cRas

o Realized there was a “nbands” loop at a relatively high level that reused the |_eps* variables \ y
« Worked to effectively cache block main loops
do 1freg=1l,nFreq
do igbeg = 1,igmax,igblk
igend = min (igbeg+igblk-1, igmax)
do my igp beg = 1, ngpown,cblk
my igp end = min(my igp beg+cblk-1,ngpown)
do nl beg=1,number bands,cblk
nl end = min(nl beg+cblk-1,number bands)

do my_igp = my_igp_beg,my_igp_end | _eps arrays do not change
do nl=nl beg,nl end < Vﬁth n1

ao ig = 1gbeg, igend

I epsRggp int = I epsRldgrmy—igpifreq)
I epsAggp int <;§£§?§A(ig,my_igp,ifreq

schD=I epsRggp™~snt-I epsAggp int
schDtt=schDtt+tagsntemp (1g, TIJ *CONJG (agsmtemp (igp, nl)) *schD

enddo

schdt matrix(ifreq,nl) = schdt matrix(ifreq,nl) + schDtt

enddo
enddo
enddo
enddo
enddo

enddo

e Resulted in a 4X improvement in wall-clock time on XEON

BerkeleyGW kernels: FF cRas

o Realized there was a “nbands” loop at a relatively high level that reused the |_eps* variables \
« Worked to effectively cache block main loops
do 1freg=1l,nFreq
do igbeg = 1,igmax,igblk
igend = min (igbeg+igblk-1, igmax)
do my_igp_beg =1, ngpown, cblk
my igp end = min(my igp beg+cblk-1,ngpown)
do nl beg=1l,number bands,cblk
nl end = mln(nl beg+cblk 1, number bands)
do my igp = my igp beg,my igp end
do nl=nl beg,nl end
aqsntemp array does not
do ig = igbeg, tgend change with my_igp
I epsRggp int = I epsR(ig,my 1igp,ifreq) -
I epsAggp int = I epsA(ig,my igp,ifreq)
schD=I _epsRggp _int-I epsAggp int
schDtt=schDtt+ *CONJG
enddo
schdt matrix (ifreq,
enddo
enddo
enddo
enddo
enddo
enddo

temp (igp,nl)) *schD

NIy = scndt matrix(ifreqg,nl) + schDtt

e Resulted in a 4X improvement in wall-clock time on XEON

20

Data Reuse will be important ANy

\

Data reuse will be critical to performance y

\

Reuse out of HBM will reduce requirements on main memory

Reuse out of lower levels of cache will lower requirements
on HBM

In order to know how to cache block properly we need to
know the trip counts of loops and the sizes of various arrays

as accurately as possible

2]

Summary ::AY‘

\

Code Characterization will be an important first step in \
preparing for Cori

Target Science

Target Scaling

Hotspot identification

Cori node is different from Edison node
Single node optimizations will be an early focus
A properly designed kernel will help with optimization efforts
Vectorization will be more important in the future

Data reuse will be important, but how important will depend
on memory footprints and access patterns

22

